Validation expérimentale d'un modèle double-couche pour des vagues côtières non-linéaires et fortement dispersives
Résumé
Le modèle original proposé par les auteurs (CHAZEL et al., 2009) pour les vagues en zone côtière est mis en œuvre et validé sur deux cas expérimentaux. Nous considérons d’abord les expériences de DINGEMANS (1994), étudiant la propagation de vagues régulières au-dessus d’une barre trapézoïdale immergée. Les résultats numériques démontrent une excellente capacité du modèle à reproduire les effets de levée, les interactions fortement non-linéaires, ainsi que la génération puis la propagation de composantes harmoniques d’ordres élevés après la barre. Ensuite, nous vérifions la capacité du modèle à propager des vagues irrégulières non-déferlantes sur une bathymétrie plus complexe (essai 26 de BECQ-GIRARD et al., 1999). L’analyse et la comparaison des spectres de variance montrent que les résultats du modèle sont également en très bon accord avec les mesures expérimentales.
Abstract:
The new model recently proposed by the authors (CHAZEL et al., 2009) to simulate waves in the coastal zone is applied and validated on two experimental cases. Firstly the set of experiments by DINGEMANS (1994) is considered, with the propagation of regular waves over a submerged trapezoidal bar. The numerical results show the excellent capabilities of the model to reproduce the shoaling effects, as well as the generation and the further propagation of higher harmonics after the bar. Then we check the ability of the model to propagate irregular non-breaking waves over a more complex bottom profile (experiment 26 by BECQ-GIRARD et al., 1999). The analysis and comparison of variance spectra show that the model results are also in very good agreement with experimental measurements.
Keywords: Waves, Nonlinear waves, Dispersive waves, Coastal waves, Wave models, Boussinesq-type model, Two-layer modelling technique.
Mots-clés
Texte intégral :
PDFRéférences
AGNON Y., MADSEN P.A., SCHÄFFER H.A. (1999). A new approach to high-order Boussinesq models. Journal of Fluid Mechanics, Vol. 399, pp 319-333. CrossRef
BECQ-GIRARD F., FORGET P., BENOIT M. (1999). Non-linear propagation of unidirectional wave fields over varying topography. Coastal Engineering, Vol. 38, pp 91-113. CrossRef
BINGHAM H.B., AGNON Y. (2005). A Fourier–Boussinesq method for nonlinear water waves. European Journal of Mechanics B/Fluids, Vol. 24, pp 255–274. CrossRef
CHAZEL F., BENOIT M., ERN A., PIPERNO S. (2009). A double-layer Boussinesq-type model for highly nonlinear and dispersive waves. Proceedings of Royal Society of London, Series A, Vol. A 465, pp 2319-2346. CrossRef
DINGEMANS M. (1994). Comparison of computations with Boussinesq-like models and laboratory measurements. Mast-G8M note, H1684, Delft Hydraulics, Pays-Bas. URL Adress
GOBBI M.F., KIRBY J.T., WEI G. (2000). A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O((kh)4). Journal of Fluid Mechanics, Vol. 405, pp 181-210. CrossRef
LYNETT P., LIU P.L.-F. (2004). A two-layer approach to wave modelling. Proceedings of Royal Society of London Series A, Vol. A 460, pp 2637-2669. CrossRef
MADSEN P.A., BINGHAM H.B., LIU H. (2002). A new Boussinesq method for fully nonlinear waves from shallow to deep water. Journal of Fluid Mechanics, Vol. 462, pp 1-30. CrossRef
NWOGU O.G. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 119, n° 6, pp 618–638. CrossRef
PEREGRINE D.H. (1967). Long waves on a beach. Journal of Fluid Mechanics, Vol. 27, pp 815–827. CrossRef
WEI G., KIRBY J.T., GRILLI S.T., SUBRAMANYA R. (1995). A fully nonlinear Boussinesq model for surface waves: Part I. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, Vol. 294, pp 71-92. CrossRef
ZAKHAROV V.E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, Vol. 9, pp 190 194. CrossRef
DOI: http://dx.doi.org/10.5150/revue-paralia.2013.007
Renvois
_ISSN 1760-8716_
© Editions Paralia CFL