Is phytoextraction a suitable green treatment for metal contaminated sediments?
Résumé
The cleaning of waterways by regular dredging generates great volumes of sediments and, owing to human activities, these sediments often contain large amounts of metals. For some of these contaminated sediments, a treatment by phytoextraction could be considered. To our knowledge, phytoextraction with hyperaccumulating plants has been rarely tested on heavily contaminated sediments. This work consisted in a preliminary study of Cd phytoextraction potentialities and focused on the fate of Cd present in a metal-polluted dredged sediment during the culture of Arabidopsis halleri, a Zn and Cd hyperaccumulating plant. In this purpose, a five month pot experiment was achieved; results obtained for the first four months of monitoring are presented here. Cd contents in the sediment, in the aerial parts of plant and in the leachates were measured each month. Cd speciation in the sediment was studied by EXAFS and µXANES spectroscopy, Cd localization by SEM-EDX and µXRF. Before culture, Cd was present as mixed Zn, Cd and Fe sulphide in the sediment.
Version traduite : La phytoextraction est-elle un traitement "vert" approprié pour les sédiments contaminés en métaux ?
La maintenance des voies navigables par dragages réguliers génère de grands volumes de sédiment et, suite aux activités humaines, ces sédiments contiennent souvent de grandes quantités de métaux. Pour certains de ces sédiments contaminés, un traitement par phytoextraction pourrait être envisagé. À notre connaissance, la phytoextraction utilisant des plantes hyperaccumulatrices a rarement été testée sur des sédiments contaminés en métaux. Ce travail est une étude préliminaire sur le potentiel de la phytoextraction du cadmium (Cd). Il porte sur le devenir du Cd présent dans un sédiment de curage contaminé par des métaux lors de la culture d’Arabidopsis halleri, plante hyperaccumulatrice de Zn et de Cd. Dans ce but, une expérience de culture en pot de cinq mois est réalisée ; les résultats obtenus pendant les quatre premiers mois du suivi de culture sont présentés ici. Les teneurs en Cd contenues dans le sédiment, dans les parties aériennes de la plante et dans les lixiviats sont mesurées chaque mois. La spéciation du Cd présent dans le sédiment est étudiée par spectroscopie EXAFS et µXANES et la localisation par MEB-EDX et µXRF.
Mots-clés: Arabidopsis halleri; Cadmium (Cd); Hyperaccumulation; Phytoextraction; Sédiment; Spéciation.
Mots-clés
Références
ALARY C. (2001). Technical report Douai - Fr., CNRSSP: 72 p.
BAKER A.J.M., BROOKS R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology and phytochemistry. Biorecovery 1, pp 81-126.
BARCELO J., POSCHENRIEDER C. (2003). Phytoremediation: principles and perspectives. Contribut. Sci. 2, pp 333–344.
BECHER M., TALKE I.N., KRALL L., KRAMER U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant Journal 37 (2), pp 251-268. CrossRef
BERT V., MACNAIR M.R., DE LAGUERIE P., SAUMITOU LAPRADE P., PETIT D. (2000). Zinc tolerance and accumulation in metallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist. 146, pp 225-233. CrossRef
BERT V., BONNIN I., SAUMITOU LAPRADE P., DE LAGUERIE P., PETIT D. (2002). Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist 155 (1), pp 47-57. CrossRef
BERT V., MEERTS P., SAUMITOU LAPRADE P., SALIS P., GRUBER W., VERBTUGGEN N. (2003). Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249 (1), pp 9-18. CrossRef
CHANEY R.L., RYAN J.A. (1993). Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc. pp 451 506. In Keener (ed) Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects. Renaissance Publ., Worthington, OH.
CHO M., CHARDONNENS A.N., DIETZ K.J. (2003). Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytologist 158 (2), pp 287-293. CrossRef
CHRISTENSEN T.H., TJELL J.C. (1984). Leaching from land disposed municipal compost: 4. Heavy metals. Waste Management and Research, 2, pp 347-357
CLEMENS S., PALMGREN M.G., KRAMER U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Science, 7(7), pp 309-315. CrossRef
COREY R. B., KING L.D., LUE-HING C., FANNING D.S., STREET J.J., WALKER J.M. (1987). Land Application of Sludge: Food Chain Implications, (Eds Page, A. L., Logan, T. G., and Ryan, J. A. A.L. Page, Lewis Publishers, Inc., Chelsea, Michigan, pp 25–51.
CUNNINGHAM S.D., BERTHI W.R., HUANG J.W. (1995). Phytoremediation of contaminated soils. Tends in Biotechnology 13, pp 393-397. CrossRef
DAHMANI-MULLER H., VAN OORT B., GELIE B. BALABANE M. (1999). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution. 109, pp 1-8.
GIRONDELOT B., BERT V., MARSEILLE F., LABOUDIGUE A. (2003). Restoration of a metal polluted dredged sediment deposit. A Phytoremediation inventory, COST Action 837 View. Ed: T. Vanek and JP Schwitzguébel, 68 p.
GUERINOT M.L., EIDE D. (1999). Zeroing in on zinc uptake in yeast and plants. Current Opinion in Plant Biology 2, pp 244–249. CrossRef
HAE-NAM HYUN A.C., CHANG D.R., PARKER, PAGE A. (1998). Cadmium solubility in sludge-treated soil: effects of soil organic carbon. Journal of Environmental Quality 27, pp 329-334. CrossRef
HUGUET S., LACHEREZ S., LABOUDIGUE A., SARRET G., BERT V. (2007a). Phytoextraction and hyperaccumularting plant : is it possible? Colloque WG4 COST action 859, Vilnius, Lituanie.
HUGUET S., BERT V., LABOUDIGUE A., ISAURE M.P., SARRET G. (2007b). Cd localization and speciation in a contaminated sediment and in the Zn, Cd hyperaccumulating plant Arabidopsis halleri. 9th ICOBTE, 330 p.
ISAURE, M.P., LABOUDIGUE A., MANCEAU A., SARRET G., TIFFEAU C., TROCELLIER P., LAMBLE G., HAZEMANN J. L., CHATEIGNER D. (2002). Quantitative Zn speciation in a contaminated dredged sediment by mu-PIXE, mu-SXRF, EXAFS spectroscopy and principal component analysis. Geochimica Cosmochimica Acta 66(9), pp 1549-1567. CrossRef
JING J., LOGAN T. (1992). Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. Journal of Environmental Quality 21, pp 73 81. CrossRef
KLANG-WESTIN E., ERIKSSON J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249(1), pp 127-137. CrossRef
KUPPER H., LOMBI E., ZHAO F.J., McGRATH S.P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212, pp 75-84. CrossRef
LOMBI E., ZHAO F.J.,. DUHMAN S.J., McGRATH S.P. (2000). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist 145, pp 53-60. CrossRef
McBRIDE M.B. (1995). Toxic Metal Accumulation from Agricultural Use of Sludge: Are USEPA Regulations Protective? Journal Environmental Quality 24, pp 5-18. CrossRef
McGRATH S.P., LOMBI E., GRAY C.W., CAILLE N., DUNHAM S.J., ZHAO F.J. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006. 141(1), pp 115-125. CrossRef
O'DAY, P., CARROL S.A., WAYCHUNAS G.A. (1998). Rock-Water interactions controlling zinc, cadmium, and lead concentrations in surface waters and sediments, US tri-state mining district. 1. Molecular identification using X-ray absorption spectroscopy. Environmental Science and Technology 32, pp 943-955. CrossRef
PANFILI F., MANCEAU A., SARRET G., SPADINI L., KIRPICHTCHIKOVA T., BERT V., LABOUDIGUE A., MARCUS M., AHAMDACH N., LIBERT M. (2005). The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy and principal components analysis. Geochimica Cosmochimica Acta 69, pp 2265–2284. CrossRef
RASKIN I., ENSLEY B. (2000). Phytoremediation of Toxic Metals. Wiley.
SARRET G., SAUMITOU LAPRADE P., BERT V., PROUX O., HAZEMANN J. L., TRAVERSE A., MARCUS M., MANCEAU A. (2002). Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology 130, pp 1815-1826. CrossRef
RAVEL B., NEWVILLE M. (2005). ATHENA and ARTEMIS: Interactive graphical data analysis using IFEFFIT. J. Synchr. Rad. 12, pp 537-541. CrossRef
SEUNTJENS, P., MALLAANTS, D., SIMUNEK, J., PATYN, J., JACQUES D. (2002). Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile. Journal of Hydrology 264 (1-4), pp 185-200. CrossRef
THIRY M., HUET-TAILLANTER S., SCHMITT J.M. (2002). La friche industrielle de Mortagne-du-Nord (59) -I- Prospection du site, composition des scories, hydrochimie, hydrologie et estimation des flux. Bulletin Société Géologique de France 173/4, pp 369-381. CrossRef
WEBER M., HARADA E., VESS C., VON ROEPENACK LAHAYE E., CLEMENS S. (2004). Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant Journal 37 (2), pp 269-281. CrossRef
ZHAO F., LOMBI E., BREEDON T., McGRATH S.P. (2000). Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment 23: pp 507-514. CrossRef
ZHAO F., JIANG R.F., DUNHAM S.J., McGRATH S.P. (2006). Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 172, pp 646-654. CrossRef
DOI: http://dx.doi.org/10.5150/revue-paralia.2010.004
Renvois
- Il n'y a présentement aucun renvoi.
_ISSN 1760-8716_
© Editions Paralia CFL