Etude de l’évolution des formes chimiques des métaux dans des sédiments marins dragués stockés à terre
Résumé
Le stockage à terre des sédiments est un traitement qui a été envisagé dans le cadre du projet SEDI.MAR.D. 83 dans le but de diminuer la charge polluante des sédiments marins dragués. Ce traitement serait susceptible d’entraîner, par vieillissement naturel, des transformations physico-chimiques et/ou biologiques au sein de la matrice sédimentaire qui pourraient modifier sa toxicité. Ce travail a porté sur le devenir des métaux et de leurs formes chimiques lors du vieillissement des sédiments. Ce traitement permet d’abaisser la moitié de la concentration initiale du tributylétain (TBT) après deux mois d’entreposage. Cette dégradation du TBT au cours du temps de stockage à terre s’accompagne de la formation d’espèces de l’étain qui sont moins dangereuses. Pour l’arsenic, seules les formes inorganiques As(III) et As(V) ont été détectées. As(III) est la forme majoritaire dans le sédiment fraîchement dragué et s’oxyde en As(V) en fonction de la durée du traitement. Cette oxydation a également été observée pour le chrome, avec apparition de très faibles quantités de chrome hexavalent. En raison de sa grande toxicité, la formation du Cr(VI) est une limite au traitement étudié. Il semble donc préférable de considérer un temps de stockage à terre assez court de façon à dégrader le TBT tout en minimisant la formation de Cr(VI). Dans la mesure où aucun traitement vraiment efficace n’existe pour gérer les sédiments marins contaminés, cette étude montre que le stockage à terre peut être considéré comme une première approche peu coûteuse. Si le degré de pollution est suffisamment abaissé par ce procédé, il est ensuite possible d’envisager une valorisation de ces matériaux dans le domaine des travaux publics par exemple (remblais).
Translated version: Evolution of metals and their chemical forms in land-disposed dredged marine sediments
Land disposal is a treatment which has been considered in the framework of the SEDI.MAR.D. 83 project in order to decrease chemical contamination of dredged marine sediments. Natural aging could involve physico-chemical and/or biological transformations in the sediments resulting in a modification of its toxicity. This study was carried out to better understand the fate of metals and their chemical forms during this treatment. A degradation rate of 50% was observed after two months of land disposal for tributyltin (TBT) which is one of the most dangerous organotin compounds. This degradation is accompanied with the formation of less dangerous species such as dibutyltin and monobutyltin. For arsenic, only inorganic forms were identified (As(III) and As(V)) with a change in their distribution as a function of the time of land disposal. A decrease of As(III) in favour of As(V) with time was shown. This oxidation was also observed for chromium with the formation of small amounts of hexavalent chromium. Because of its high toxicity, the formation of Cr(VI) can limit the duration of land disposal. It seems therefore preferable to consider a short time of land disposal allowing degradation of TBT while minimizing Cr(VI) formation. As no really efficient treatment exists for the moment to manage contaminated dredged sediments, this study shows that land disposal could be considered as a first and non expensive approach. If the amount of contamination is sufficiently decreased by this process, it could be possible to consider sediment valorisation in the field of public works for example.
Keywords: Marine sediments; Treatments; Land disposal; Metals; Speciation analysis; SEDI.MAR.D. Projet.
Mots-clés
Références
ALZIEU C. (2000). Environmental impact of TBT : The French experience, Science of the Total Environment, Vol. 258, pp 99-102. CrossRef
AMIR S., HAFIDI M., MERLINA G., HAMDI H., REVEL J.C. (2005). Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge, Chemosphere, Vol. 58, pp 449-458. CrossRef
BOSTICK B.C., CHEN C., FENDORF S. (2004). Arsenic retention mechanisms within estuarine sediments of Pescadero, CA, Environmental Science & Technology, Vol. 38, pp 3299-3304. CrossRef
CAILLE N., TIFFREAU C., LEYVAL C., MOREL J.L. (2003). Solubility of metals in an anoxic sediment during prolonged aeration, Science of the Total Environment, Vol. 301, pp 239-250. CrossRef
CAPPUYNS V., SWENNEN R., DEVIVIER A. (2006). Dredged river sediments : potential chemical time bombs ? a case study, Water, Air & Soil Pollution, Vol. 171, pp 49-66. CrossRef
CRAIG P.J. (1986) Organometallic compounds in the environment. Longman, London, 415 p.
DIRKX W.M.R., LOBINSKI R., ADAMS F.C. (1994). Speciation analysis of organotin in water and sediments by gas chromatography with optical spectrometric detection after extraction separation, Analytica Chimica Acta, Vol. 286, pp 309-318. CrossRef
GRAHAM A.M., WADHAWAN A.R., BOUWER E.J. (2009). Chromium occurrence and speciation in Baltimore harbour sediments and porewater, Baltimore, Maryland, USA, Environmental Toxicology and Chemistry, Vol. 28, pp 471-480. CrossRef
GUO T., DELAUNE R.D., PATRICK W.H. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment, Environmental International, Vol. 23, pp 305-316. CrossRef
HEROULT J., NIA Y., DENAIX L., BUENO M., LESPES G. (2008). Kinetic degradation processes of butyl- and phenyltins in soils, Chemosphere, Vol. 72, pp 940-946. CrossRef
KRETCHIK J.T. (2005). OSHA's direction, Chemical Health & Safety, Vol. 12, pp 44-44. CrossRef
O’NEILL P. (1995). Arsenic. Dans: Heavy metals in soils, Blackie Academic & Professional, London, pp 105-121.
RODRIGUEZ MARTIN-DOIMEADIOS R.C., MONPERRUS M., KRUPP E., AMOUROUX D., DONARD O.F.X. (2003). Using speciated isotope dilution with GC-inductively coupled plasma MS to determine and unravel the artificial formation of monomethylmercury in certified reference sediments, Analytical Chemistry, Vol. 75, pp 3202-3211. CrossRef
RIFKIN E., GWINN P., BOUWER E. (2004). Chromium and sediment toxicity, Environmental Science & Technology, Vol. 38, pp 267A-271A. CrossRef
SARRADIN P.M., LAPAQUELLERIE Y., ASTRUC A., LATOUCHE C., ASTRUC M. (1995). Long term behaviour and degradation kinetics of tributyltin in a marina sediment, The Science of the Total Environment, Vol. 170, pp 59-70. CrossRef
SEBY F., BENOIT-BONNEMASON C., DONARD O.F.X. (2007). Evolution des métaux et de leurs formes chimiques dans des vases portuaires dans le cadre d’un stockage à terre. Rapport de contrat SEDI.MAR.D. 83, 49 p.
SEBY F., GAGEAN M., GARRAUD H., CASTETBON A., DONARD O.F.X. (2003). Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry, Analytical Bioanalytical Chemistry, Vol. 377, pp 685-694. CrossRef
SINGH S.P., TACK F.M., VERLOO M.G. (1998). Heavy metals fractionation and extractability in dredged sediment derived surface soils, Water, Air and Soil Pollution, Vol. 102, pp 313-328. CrossRef
STEPHENS S.R., ALLOWAY B.J., PARKER A., CARTER J.E., HODSON M.E. (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation, Environmental Pollution, Vol. 114, pp 407-413. CrossRef
TESSIER E., AMOUROUX D., MORIN A., LEHNOFF C., THYBAUD E., VINDIMIAN E., DONARD O.F.X. (2007). (Tri)Butyltin biotic degradation rates and pathways in different compartments of a freshwater model ecosystem, The Science of the Total Environment, Vol. 388, pp 214-233. CrossRef
THOMAS P., FINNIE J.K., WILLIAMS J.G. (1997). Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled high-performance liquid chromatography - Inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, Vol. 12, pp 1367-1372. CrossRef
VERMEULEN J., VAN GOOL M.P.M., MENTINK G.H., JOZIASSE J., BRUNING H., RULKENS W.H., GROTENHUIS J.T.C. (2007). Biochemical ripening of dredged sediments. Part 2. Degradation of polycyclic aromatic hydrocarbons and total petroleum hydrocarbons in slurried and consolidated sediments, Environmental Toxicology and Chemistry, Vol. 26, pp 2540-2549. CrossRef
XU H., ALLARD B., GRIMVALL A. (1988). Influence of pH and organic substance on the adsorption of As(V) on geologic materials, Water, Air & Soil Pollution, Vol. 40, pp 293-305.
DOI: http://dx.doi.org/10.5150/revue-paralia.2009.s03
Renvois
- » 2013 Chemical Marine Monitoring, Wiley Online Library
- » 2013 Soil and Sediment Contamination
- » 2011 Conf Méd Côtière & Maritime Art n° 25
- » 2010 JNGCGC Art n° 093
- » 2009.s01 Revue Paralia
- » 2009.s02 Revue Paralia
- » 2012.003 Revue Paralia
- » 2015 Revue Nature & Technologie
_ISSN 1760-8716_
© Editions Paralia CFL