Un nouveau modèle couplé vagues-courant 3D : développement et validation
Résumé
Un modèle numérique couplant la circulation tridimensionnelle, résolue par le code MARS3D, et l'état de la mer, calculé par le code WAVEWATCH III, est développé pour étudier l'hydrodynamique des zones côtières et littorales. Le principe général du modèle, faisant appel au coupleur PALM est décrit, ainsi que les aménagements apportés aux deux codes existants afin de rendre le couplage possible. Des premiers tests en deux dimensions horizontales ont permis de développer une première version. En trois dimensions, nous montrons que le modèle doit calculer la vitesse quasi-eulérienne, car il n'existe pas de forme analytique cohérente du forçage par les vagues pour la vitesse lagrangienne. Cet aspect est illustré par un résultat comportant de très fortes erreurs par rapport à la solution analytique, obtenu avec une formulation en vitesse lagrangienne.
Abstract:
A numerical model coupling the three-dimensional oceanic circulation, thanks to the MARS3D model, and the sea state computed by the WAVEWATCH III model, is developed in order to study the hydrodynamic of the nearshore zone. The main principle of the coupled model based on the coupler PALM and the necessary modifications made for the coupling procedure to both numerical codes are described. First tests in horizontal two-dimension are made and they allowed us to develop a primary version. For three-dimensional flow, we show that the coupled model must solve the quasi-Eulerian velocity. In fact, a coherent analytical form of the wave forcing for the Lagrangian velocity does not exist. This point is illustrated by one example with large errors in comparison with the analytical solution when solving for the Lagrangian mean flow.
Keywords: Wave-current modeling; Nearshore zone; MARS3D; WAVEWATCH III.
Mots-clés
Texte intégral :
PDFRéférences
ARDHUIN F. (2005). Etat de la mer et dynamique de l’océan superficial. Habilitation à diriger des recherches, Université de Bretagne Occidentale, 318 p.
ARDHUIN F., RASCLE N., BELIBASSAKIS K.A. (2008a). Explicit wave-averaged primitive equations using a generalized lagrangian mean. Ocean Modelling, Vol. 20, pp 235-264. CrossRef
ARDHUIN F., JENKINS A.D., BELIBASSAKIS K. (2008b). Commentary on ‘the three-dimensional current and surface wave equations’ by George Mellor. J. Phys. Oceanogr., Vol. 38, pp 1340-1349. CrossRef
ARDHUIN F., MARIE L., RASCLE N., FORGET P., ROLAND A. (2009). Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., Vol. 39, pp 2820-2838. CrossRef
BENNIS A.-C., ARDHUIN F., DUMAS F. (2011). On the coupling of wave and three-dimensional circulation models: Choice of theoretical framework, practical implementation and adiabatic tests. Ocean Modeling, Volume 40 (3–4), pp 260-272. CrossRef
BUIS S., PIACENTINI A., DECLAT D. (2006). PALM : A computational framework for assembling high performance computing applications. Concurrency and Computation: Practice and Experience, Vol. 18, pp 231–245. CrossRef
LAZURE P., DUMAS F. (2008). An external-internal mode coupling for 3d hydrodynamical model for applications at regional scale (MARS). Adv. Water Resources, Vol. 31, pp 233-250. CrossRef
LENTZ S.J., HOWD M.F., FREDERICKS J., HATHAWAY K. (2008). Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., Vol. 38, pp 2341-2357. CrossRef
LONGUET-HIGGINS M.S. (1967). On the wave-induced difference in mean sea level between the two sides of a submerged breakwater. J. Mar. Res., Vol. 25, pp 148-153.
LONGUET-HIGGINS M.S. (1970a). Longshore currents generated by obliquely incident sea waves, 1. J. Geophys. Res., Vol. 75, pp 6778-6789. CrossRef
LONGUET-HIGGINS M.S. (1970b). Longshore currents generated by obliquely incident sea waves, 2. J. Geophys. Res., Vol. 75, pp 6790-6801. CrossRef
MELLOR G.L. (2003). The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, pp 1978-1989. CrossRef
PHILLIPS O.M. (1977). The dynamics of the upper ocean. Cambridge University Press, London, 336 p.
SMITH J.A. (2006). Wave-current interactions in finite-depth. J. Phys.Oceanogr., Vol. 36, pp 1403-1419. CrossRef
SVENDSEN I.A., PETREVU U. (1994). Nearshore mixing and dispersion. Proc. Roy. Soc. Lond. A, Vol. 445, pp 561-576. CrossRef
THORNTON E.B., GUZA R.T. (1986). Surf zone longshore currents and random waves: Field Data and Models. J. Phys. Oceanogr., Vol. 16, pp 1165-1178. CrossRef
TOLMAN H.L. (2008). A mosaic approach to wind wave modelling. Ocean Modelling, Vol. 25, pp 35-47. CrossRef
WU C.S., THORNTON E.B., GUZA R. (1985). Waves and longshore currents: Comparison of a numerical model with field data. J. Geophys. Res., Vol. 90, pp 4951 4958. CrossRef
DOI: http://dx.doi.org/10.5150/revue-paralia.2013.008
Renvois
_ISSN 1760-8716_
© Editions Paralia CFL