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Abstract: 
This study is based on data obtained from the numerical solution of a 1DV theoretical 
transport equation. These data have been used to implement a model describing the 
vertical profile of the suspended matter concentration, in connexion with problems of 
sediment transport by open surface flows. 
For an unsteady state, without erosion or deposition, a first description of the vertical 
concentration distribution is proposed. This is similar to the general equation of the 
steady state concentration profile and involves a parameter named alpha, which always 
tends towards its terminal theoretical value corresponding to the steady state. 
With deposition or erosion, if the variables of the problem remain constant, and the 
solid exchanges between the bed and the flow are proportional to the sediment settling 
velocity multiplied by the bottom concentration, it is observed in this study that the 
concentration profile tends towards a terminal shape. In accordance with the approach 
adopted, a modification of the shape of the concentration profile is linked to the solid 
exchanges at the bottom. This modification is described by a function to which a second 
parameter, called beta, is added. 
The entire model for the vertical profile of the concentration in unsteady state with 
erosion and deposition, involves two non-dimensional parameters, alpha and beta, and a 
dimensional parameter, which is the reference concentration. A stationarity of alpha and 
beta parameters is possible with erosion or deposition, implying necessarily a non 
stationarity of the reference concentration. 
Time-variations of non-dimensional parameters of the model are described by two 
phenomenological equations. A good adjustment of all the proposed formulations 
allows to obtain a very stable and accurate model, which can be used to improve the 
precision of results obtained from 2DH transport models. 
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1. Introduction 
With today's computers, and a moderate calculation cost, the 2DH hydrodynamic 
models used in ocean, coastal, lake, estuarine and river environments, allow the 
applications at a fine scale covering large areas and over long periods. 
When the variables studied by these models can be properly described as a function of 
the vertical coordinate, the results obtained are very similar to those from three-
dimensional models. Two successful applications following this approach are: (i) 
models of wave propagations above a slightly inclined bottom describing the vertical 
distribution of the velocity potential with Stokes-Airy’s theory, and, (ii) models of 
homogeneous fluid streams that integrate shear stress over the full depth to take into 
account its effect on vertical mean velocities. 
One of the aims of this paper is to include, in 2DH modelling of suspended sediment 
transport by open surface flows, an accurate description of the vertical distribution of 
the sediment. Beyond the Rouse-Vanoni law, which is valid for uniform and steady 
states, the developed model can be applied in unsteady and non-uniform conditions, 
when the solid exchanges at the bottom are parameterized by a deposition or erosion 
rate. With this model, the reference bottom concentration can be known in order to 
properly calculate the rate of deposition. This model also allows to know at any time the 
vertical distribution of the suspended matters, for all practical purposes. 
 
2. Theory 
In the problems studied in this paper, fine sediments in suspension are transported by 
currents with their horizontal velocity. In a 3D turbulent flow, the instantaneous local 
value of the suspended matter concentration c fluctuates around a mean value C. The 
decomposition of c is written as follows: 

'cCc   (1) 
where c' is the fluctuation of the concentration. If molecular mass diffusion is neglected, 
the concentration C in a turbulent flow is governed by the following transport equation 
(Cartesian coordinate system Oxyz with z as the vertical coordinate): 
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where W is the local mean value of the suspended sediment settling velocity, Vx, Vy and 
Vz are the local components of the velocity characterizing the mean turbulent flow, and 
terms ''cvx , ''cv y , ''cvz , represent the temporal correlations between fluctuant 
velocity components and the fluctuation of the concentration. The latter quantify mass 
transfers linked to the turbulence. Usually, these terms are modelized as follows by the 
Fick-Boussinesq diffusion law: 
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where Kx, Ky and Kz are turbulent diffusion coefficients in the x, y and z directions, 
respectively. The 3D transport equation becomes: 
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The solution of this equation must satisfy a border condition concerning the sediment 
exchanges at the bottom. 
If the bottom is located at z=0, in the case of resuspension described by an effective 
erosion rate Eef (sediment source term in kg m-2 s-1), the border condition is: 
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In case of deposition, the border condition is: 
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where Def denotes the effective deposition rate (sediment sink term in kg m-2 s-1), which 
can be calculated by the following formulation (KRONE, 1986; METHA, 1986): 

00 CWpDef   (7) 

where, on the one hand, C0 is the suspended sediment concentration at the bottom of the 
flow and W0 the mean settling velocity of this suspended sediment. On the other hand, 
the term p represents, according to KRONE (1986), the probability [0;1] of the bottom 
settling sediments to adhere to the bed. If p=0, all the particles touching the bed are 
immediately resuspended by the flow and the effective deposition rate is zero. 
If the sedimentary regime is steady and uniform, the problem is greatly simplified and 
the vertical distribution of C is governed by: 

z

C
KCW z 


  (8) 

Integration of this equation allows to obtain the Rouse-Vanoni generalized law for a 
steady state of the suspended matter vertical distribution (ORTON & KINEKE, 2001; 
SANCHEZ et al., 2005): 
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The above equation can be analytically resolved depending on the expressions of Kz and 
W. Some known solutions are presented in the appendices 1 at the end of this paper. In 
what follows, these two physical magnitudes are considered to be invariants with z. The 
expression 9 becomes: 

)exp()( 0   zPCzC e
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where z°=z/d is the non dimensional vertical coordinate, d the depth and Pe the Peclet 
number characterizing the vertical sediment convection-diffusion transfers: 
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One usual relation to evaluate Kz is: 
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where Uc is the shear velocity and =0.4 the universal Karman constant. 
The expression of C0/C  ratio (where C  is the mean concentration over all the depth) is 
obtained by integrating the equation 10: 
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Equation 13 could be used in 2DH modelling to estimate the bottom concentration C0 as 
a function of the mean vertical concentration C . Actually the knowledge of C0 is 
needed to reliably estimate the rate of deposition by equation 7. 
Nevertheless, in accordance with the numerical simulations carried out by TEETER 
(1986), results obtained from hydro-sedimentary modelling show that when the 
sedimentation of suspended sediment begins to occur, the C0/C  ratio decreases 
compared to the value given by equation 13. This decrease is explained by a reduction 
of the concentration, which is relatively important near the bottom as shown in Figure 1. 
A formulation from TEETER (1986) which allows the calculation of C0/C  ratio in 
current existing models (LUMBORG & WINDELIN, 2003) is written as follows: 
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Figure 1. Illustration of the sedimentation effects on the concentration vertical profile. 

Thin line: steady state law. Thick line: profile observed during a deposition period 
(z°=0=bottom; z°=1=surface). 
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Studies on non-cohesive sediment transport show that when the Peclet number exceeds 
a critical threshold Pe

cr, whose value is between 9 and 15, transport in suspension 
cannot occur (TEETER, 1986). This criterion should be applicable also for fine 
sediments when the value of the Peclet number remains below the critical value long 
enough compared to the time required for suspended particles to settle. 
 
3. Methods 
In order to understand the dynamic behaviour of sediments in the water column, a 1DV 
numerical model based on the following equation has been implemented: 
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Tests have been carried out for a wide range of values of the problem variables covering 
most possible real cases of fine sediment transports by coastal and estuarine flows. 
During these tests, different values of the studied variables were combined. Among the 
values examined are: 
- 8 values of d (in m): 0.25; 0.5; 1; 2; 4; 8; 16 and 32. 
- 6 values of W (in mm s-1): 0.05; 0.1; 0.2; 0.4; 0.8 and 1.6. 
- Values of Uc (in m s-1) variables ranging between 0.00002 and 0.3. 
The numerical models discretize the water column in N layers of constant non-
dimensional thickness equal to z°=z/d=1/N. In most tests the value of N was fixed at 
50, but in some specific tests N=100 was retained. At every modelling step, and in every 
instant t, the concentration Ci is known in the middle of each layer i of the water column 
whose non-dimensional level measured from the bottom is  z°i=(i-½)z°. 
 
3.1 Unsteady state without erosion or deposition 
The first tests were carried out with a cyclical variation of the shear velocity given by 
the following expression: 

 )cos(1 tAmplUU moycc    (16) 

where Uc-moy is the mean shear velocity of the test, Ampl is a parameter defining the 
relative amplitude of the oscillation of Uc, and =2/T is the angular frequency which is 
linked to the oscillation period T. 
In most tests, the parameter Ampl was fixed at 0.80 (except in a reduced number of 
cases for which the retained value is mentioned), and the period T at 22320 s, which is 
half of the theoretical value of the semidiurnal tide period. For the parameter Uc-moy 
(in m s-1), the following four values have, in particular, been studied: 0.01; 0.02; 0.04 
and 0.08. 
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3.1.1 Description of the vertical concentration profile without erosion or deposition  
Initial tests have shown that the vertical concentration profile remained, in most cases, 
close to the decreasing exponential law. Nevertheless, it should be indicated that these 
profiles are not exactly in accordance with that law. In order to adjust at every 
modelling time t, an exponential equation for the concentrations profile, the least square 
method was used. 
In accordance with this method, if a variable Y is linearly linked to a variable X, and 

BXAY ˆ  is the best approach of Y adjusted in agreement with this criterion, then the 
A and B parameters are given by: 
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where Xi and Yi are the associated pairs of the experimental values of these variables 
and N the total number of these pairs. 
If the vertical profile of the concentration is approached by the following equation: 

)ˆexp(ˆ)(ˆ  zczC   (19) 

where ĉ  is a reference concentration and ̂  is a parameter, then, the problem is 
linearized, making the following change of variables: Xi=z°i and Yi=ln(Ci). In this case, 
the adjusted parameters are given by: ̂ =–A and ĉ =exp(B). 
 
3.1.2 Characterizing the error between the adjusted exponential law and the vertical 
profile of the concentration resulting from 1DV model 
The relative error associated with the estimation of Ci by Ĉ , is defined as follows: 
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At every step of the 1DV numerical modelling, the function ê (z°) can be evaluated 
from results of Ci(z°) and by using the adjusted values of the parameters ĉ  and ̂  to 
compute )(ˆ zC . 
 
3.2 Unsteady state with erosion and deposition 
Tests of the 1DV numerical model with deposition and/or erosion were made by 
combining the different values of the problem parameters given above. 
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Tests of depositions were realized with the following values of parameter p of Krone’s 
sedimentation law (Equation 7): 0125, 0.25, 0.5 and 1. 
To characterize erosion tests, a non dimensional erosion rate q was defined as follows: 
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The studied parameter q values are: 0.125; 0.25; 0.5; 1; 2; 4; 8 and 16. 
A reduced number of tests were carried out with a fixed value of the Eef/(Winit×Cinit) 
ratio, where Winit and Cinit are the initial values (at t=0) of the variables W and C, 
respectively. 
 
4. Results from numerical 1DV simulations and development of a 
phenomenological model  
 
4.1 Sedimentary transport without erosion or deposition 
 
4.1.1 Relative local error linked to the adjusted exponential law describing the vertical 
profile of the concentration 
The analysed tests correspond to a variation of Uc according to equation 16, for different 
values of the magnitudes Uc-moy, W and d. 
The study of function ê (z°) characterizing the relative local error associated with the 
estimation of Ci, by the Ĉ  adjusted equation, shows that in all the cases ê (z°) profiles 
remain similar (Figure 2). Maximum value of | ê | is always observed at the bottom (at 
z°=0). The sign of ê  at the surface is always opposite to the one corresponding to the 
bottom. The vertical profile of the relative error includes systematically 3 crossings 
passing by ê =0. Although the level z° of these crossings varies slightly from one case 
to another, the following values	can	be	mentioned: 
- Superior crossing: z° ≈ 0.90 
- Intermediate crossing: z° ≈ 0.51 
- Inferior crossing: z° ≈ 0.12 
The study of the relative error allows to draw figure 3, with 51840 values of ê (z°=0), 
combining different values of the problem variables. 
In 90% of the studied cases, the absolute value of ê (z°=0) remains less than 0.03, and in 
99%, less than 0.23. However, in some cases, the maximum values of | ê (z°=0)| exceeds 
a value of 0.40. It was found that the highest errors correspond to larger Peclet numbers, 
which reach a value of 12 in these tests. It should be noted that the values of Peclet 
numbers are greater than the critical threshold Pe

cr above which a transport by 
suspension cannot occur, involving a deposition of the suspended sediment that is not 
taken into account in this first series of modelling. 
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A very close relationship was found between the instantaneous values ê (z°=0) and 
some characteristic parameters of the problem (see Figure 3). The following law was 
adjusted (it overestimates the error for great values of d̂ /dt): 
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Figure 2. Examples of two ê (z°) vertical profiles corresponding to maximum errors 
observed for the test defined by: Uc-moy=0.02 m s-1; W = 0.0002 m s-1 and d = 8 m. 

 

 
Figure 3. Relation between ê (z°=0) and (d/Uc)×d̂ /dt according to the 1DV numerical 

modelling (the figure contains 51840 experimental points). 
 
Due to the high correlation coefficient justifying equation 22, it could be included in a 
model to improve its accuracy. However, knowing that the extreme values of ê (z°=0) 
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are observed for well-marked conditions of deposition, this option is not considered as 
the study of sediment transport without deposition or erosion has little interest. 
It must be noted that a positive value of d̂ /dt, which corresponds to a period of 
concentration increasing at the bottom and decreasing at the surface, is accompanied by 
a negative value of ê (0). This indicates that near the bed, the value of Ĉ , according to 
the adjusted law, is lower than the concentration Ci evaluated with 1DV model. 
 
4.1.2 Modelling of the vertical concentration profile in unsteady state without 
deposition or erosion 
After confirming that, in similarity with equation 10 and 19, the C/C0 ratio can be 
modelled correctly by a function F(z°;)=exp(- z°), a phenomenological model is used 
to describe the vertical profile of the concentrations of unsteady state without deposit or 
erosion. This is written as follows: 

)~exp(~)(
~

 zczC   (23) 

where c~  is the reference concentration near the bed and ~  is the model parameter (the 
smaller the parameter ~ , the more uniform the vertical distribution of sediment). 
Plots of ̂  and Pe as a function of time show that in all the cases studied the signal ̂ (t) 
is lagging behind Pe(t). At every instant t, ̂  value tends towards Pe value (Figure 4). It 
was also found that the maximum and minimum in signal ̂ (t) corresponded to the 
moment when the two signals crossed. Finally, the analysis shows that the phase shift 
depends mainly on the Uc/d ratio. On the basis of these observations the retained model 
to simulate the variation in time of ~  is the following: 
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where ∞=Pe is the terminal steady state value of the parameter ~  and c a coefficient 
of the model. All the numerical results from 1DV model were used to validate the above 
equation and to evaluate c≈0.667. 
An equivalent expression to equation 23 was used by BELINSKY et al. (2005) to study 
the load of a water column with depth d→∞, caused by an erosion of the bed. By 
assuming the existence of a terminal saturation value for C0, they obtained a model 
somewhat different from that defined by equation 24. 
Figure 4 is an example of results for a test case. This figure shows the time variations 
of: (i) Uc (in dm s-1), (ii) Pe, (iii) parameter ̂  evaluated from the results of 1DV model 
adjusted according to the least square method, and (iv) parameter ~  obtained from 
equation 24 resolved numerically using the predictor-corrector method of Runge-Kutta. 
In addition, this figure shows ê (z°=0) evaluated from numerical simulations on one 
hand and estimated with the empirical approach defined by Eq. 22 on the other hand. 
The most important phase shift between the signals Pe(t) and ̂ (t) were observed for 
d=32 m and Uc-moy=0.01 m s-1, which are the maximum and minimum values studied for 
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these two magnitudes. The curves of Figure 5 correspond to this case. As a consequence 
of the high value of the d/Uc ratio, maximum values observed of ê (z°=0) are here very 
high, and always associated with extreme values of Pe. 
 

 
Figure 4. Results validating the phenomenological model in unsteady state, without 

erosion or deposition, corresponding to the test-case defined by:  
Uc-moy=0.02 m s-1; W = 0.0002 m s-1 and d = 8 m. 

 

  
a) W = 0.0001 m s-1 b) W = 0.0016 m s-1 

Figure 5. Results for unsteady state, without erosion or deposition, corresponding to 
two test-cases defined by: Uc-moy=0.01 m s-1 and d = 32 m. 

 
Figure 5a corresponds to a settling velocity W=0.0001 m s-1 and Figure 5b to 
W=0.0016 m s-1. Between these two cases the ̂ (t)/Pe ratios remain nearly identical, but 
with a small difference involving a slight dependence of the c coefficient of the 
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phenomenological model with regards to the value of ̂  when it becomes high, and 
have the same order of magnitude as Pe

cr. This dependence is neglected in this study in 
the range of values examined	for the variables of the problem. 
For values Uc-moy/d greater than about 0.02, the phase shift between the signals Pe(t) and 
̂ (t) is negligible, except in the temporal neighbourhood of the maximum of the Peclet 
number (Figure 6). 
In fact, in a coastal environment, the maximum for the Peclet number is observed when 
the direction of the tidal stream reverses, so that Uc can tend towards zero. Thus, 
sedimentary regime can be considered steady during part of a tidal cycle and unsteady 
during the complementary part. Insofar as the Uc signal considered in the modelling has 
a period T=22320 s (which is representative of the semidiurnal tides with a period of 
44640 s), the following criterion to determine whether the sediment regime in a given 
environment is steady or unsteady at any moment can be proposed: 

steadyearlynisregimeysedimentarthe
d

TU
If c ,500~: 


 (25) 

 

  
a) W = 0.0001 m s-1 b) W = 0.0016 m s-1 

Figure 6. Results for unsteady state, without erosion or deposition, corresponding to 
two test-cases defined by: Uc-moy=0.02 m s-1 and d = 1 m. 

 
In order to explore the robustness of the phenomenological model, some tests were 
carried out including values of Uc→0 for which Pe→∞. These tests correspond to a 
settling velocity W=0.0002 m s-1 and a variation of the shear velocity controlled by 
Uc-moy=0.02 m s-1 and Ampl=0.999, so that during the modelling the minimum value of 
Uc is of 2×10-5 m s-1 and the associated maximum Peclet number is equal to 150. The 
corresponding results, represented in Figure 7, show the validity of the 
phenomenological model for this extreme case. 
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a) d = 8 m b) d = 1 m 

Figure 7. Results for unsteady state, without erosion or deposition, corresponding to 
two test-cases defined by: W=0.0002 m s-1, Uc-moy=0.02 m s-1 and Ampl=0.999. 

 
These results also confirm that the c coefficient of the phenomenological model is 
dependent on the value of̂ . In fact, it seems that for great values of ̂  the coefficient 
c increases slightly. This dependence is neglected in this study. 
The phenomenological model for variation of ~  remains stable for Uc=0, because in 
this extreme case equation 24 becomes: 
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Although for Uc=0 the model is stable, it should be noted that during the period of time 
when this condition persists, the sediments settle without turbulent mixing, so that the 
actual shape of the suspended vertical solid profiles deviates from that of an exponential 
law, and even more so that this period of time is long. 
As a consequence of the no deposition condition imposed, which is unrealistic for Uc=0, 
sediments tend, according to the 1DV modelling results, to accumulate in the lower 
layers of the water column, which is accompanied, in accordance with equation 26, by 
an increase in the estimated values for the parameter ~ . 
 
4.2 Sedimentary transport with erosion and/or deposition 
Modifications induced on the vertical profile of the suspended sediment concentration 
by deposition and erosion phenomena are generally greater than that due to the non 
stationarity of the sediment regime linked exclusively with the fluctuations of the 
hydrosedimentary variables. The effects of these two exchanges of sediments between 
the bed and the flow are described thereafter. 
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4.2.1 Description of the vertical profile of the concentrations in unsteady state with 
deposition 
Research work for a description of the vertical profile of the concentration in unsteady 
state with deposition is based on results of 1DV numerical model combining the 
different values examined for magnitudes Uc-moy, W and d. 
The examined tests were carried out for the following values of the parameter p of 
Krone’s sedimentation law (equation 7): 0.125; 0.25; 0.5 and 1. 
The first part of this work examines the properties of the Ci(z°)/C

~
(z°) ratio, where Ci 

defines the concentration obtained from 1DV numerical model for unsteady state with 
deposition (Figure 8). It was observed that in most cases this ratio can be described by 
an exponential law as: G(z°;)=exp(-(1-z°)2). For this reason, the retained 
phenomenological model to describe the concentration is written as follows: 

))1(exp()exp()( 2 zzCzC R   (27) 

Where CR is a reference concentration and  a parameter of the model depending on the 
variable of the problem. The objective with this model is to minimize the difference 
between C(z°) and Ci(z°), as much as possible. 
 
 

  
a) Pe=0.98; p=1; d=8 m; W=0.0004 m s-1 b) Pe=3.9; p=1; d=8 m; W=0.0016 m s-1 

Figure 8. Examples of vertical profiles of Ci(z°)/C
~

(z°) ratio, evaluated from 1DV model 
results with deposition (for Ci) and from the phenomenological model adjusted in 

unsteady state, without erosion or deposition (for C
~

). 
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Given that =~  was retained, the experimental value of the reference concentration is 
calculated as follows as a function of the value of the surface concentration issued from 
the 1DV numerical model: 
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The theoretical values of Gi(z°) are determined by: 
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Finally, the experimental value of ̂  was obtained by an adjustment of the data to 
function ))1(ˆexp()(ˆ 2 zzG   in accordance with the least square criterion: 
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It was found that a stationary terminal value ∞ can be determined for parameter ̂  if 
the independent variables of the problem (Uc, W and d) remain constant, provided that 
parameter p of Krone’s sedimentation law (Equation 7) is also constant. Under these 
conditions, deposition processes cause a gradual decrease in suspended matter 
concentrations, but stationarity is observed for parameter ̂ . The simulations using the 
1DV numerical model regarding deposition conditions imposed by steps, show that in 
all cases the value of ̂  tends to a terminal value ∞ (see Figures 9 and 10). 
 

  
a) =Pe=0.6; W=0.0004 m s-1; d=8 m b) =Pe=2.4; W=0.0008 m s-1; d=8 m 

Figure 9. Results from 1DV numerical tests in unsteady state with deposition 
represented by values of ̂ . Evolution of ∞=0.5p, according to its adjusted law, and 

variation of  according to the phenomenological model defined by equation (31) 
resolved by the predictor-corrector method of Runge-Kutta. 
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a) =Pe=0.6; p=1; W=0.0004 m s-1; d=8 m b) =Pe=2.4; p=1; W=0.0008 m s-1; d=8 m 

Figure 10. Results from 1DV numerical tests in unsteady state with deposition 
represented by an instantaneous profile of Ci/Cinit. Instantaneous profile of C

~
/Cinit 

according to the phenomenological model without erosion or deposition. Ratio Ci/C
~

 
and function ))1(ˆexp()(ˆ 2 zzG   adjusted from this ratio. 

 
Simulations with deposition by steps were realized as a function of the variables of the 
problem to assess terminal values of ∞ corresponding to a steady state of parameter ̂ . 
Figure 11 shows that ∞ can be linked to parameters p and  by: ∞=0.5 p. In the same 
way as for parameter ~ , results show that the phase shift between (t) and ∞(t) signals 
depends mainly on the Uc/d ratio. Based on this observation, the retained mode to 
simulate the time variations of  is: 

 
  d

U
c

dt

d c  (31) 

where c is a model coefficient whose value is estimated from the curves of ̂ (t) issued 
from numerical 1DV tests with deposition imposed by steps (see Figure 9). Assessment 
of this coefficient leads to writing: 
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It is interesting to notice that for a steady terminal regime of  and  parameters, the 
phenomenological model implemented in this article can be written as follows: 
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So, this approach of the vertical profile of the concentrations is compatible with the 
border conditions at the bottom and the surface. In fact we can get: 
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However, it should be noted that when parameters  and  are not in a steady state, 
these boundary conditions are not strictly fulfilled, so that in these cases the model 
includes uncertainty that can be studied through the inherent errors associated to the 
results of the phenomenological model. The study of these errors will be made in 4.2.3, 
where deposition and erosion are simulated during the same test. 
 

 
Figure 11. Parameter ∞ as a function of p× (516 experimental points). 

The continuous line corresponds to the adjusted law ∞=0.5 p. 
 
4.2.2 Description of the vertical profile of the concentrations in unsteady state with 
erosion 
Parameter  taking into account the effect of depositions on the vertical profile of 
concentrations can also be used to consider erosion effects. As for the deposition case, it 
is observed that a stationary terminal value of ∞ can be determined for parameter ̂  if 
the independent variables of the problem (Uc, W and d) remain constant, but only if a 
parameter defined by q=Eef/(C0W0) remains also constant. 
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It should be noted that this last condition is not "natural" in sedimentary processes 
because generally Eef is considered to be independent of C0W0. Indeed, it is recognized 
that the effective erosion rate Eef depends mainly on the erosive hydrodynamic stresses 
and the resistance of sediments towards these stresses. However, modelling of erosion 
by steps with invariant q parameter provides the most accurate numerical method 
available to assess ∞ and c (see Figures 12 and 13). Tests allowed to evaluate 
c=0.667. 
In terminal steady state for parameters  and , a relationship ∞=-0.5×q is compatible 
with the border conditions at the bottom and surface. The results of the 1DV numerical 
erosion imposed by steps show that this relationship is only valid for values of q less 
than 0.1 (see Figure 14), although above this value ∞ is closely correlated with q. The 
retained approach is: 
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We must point out that in the course of this study we found that in some cases, 
particularly with erosion, the results from 1DV numerical model with N=20 are less 
accurate than those from the phenomenological model developed in this paper. In this 
study, this problem was resolved taking N=50, or N=100 in some cases. 
 

  
a) =Pe=0.15; W=0.0004 m s-1; d=16 m b) =Pe=0.15; W=0.0004 m s-1; d=16 m 

Figure 12. Results from 1DV numerical tests in unsteady state with erosion represented 
by values of ̂ . Evolution of ∞(q,) according to its adjusted law, and variation of  

according to the phenomenological model defined by equation (31) resolved by the 
predictor-corrector method of Runge-Kutta. 

 
4.2.3 Simulations in unsteady state with erosion and deposition 
Results obtained from 1DV modelling corresponding to the vertical dynamic of the 
suspended sediments in unsteady state with erosion and deposition, are presented in this 
section. 
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a) =Pe=0.15; q=1; W=0.0004 m s-1; d=16 m b) =Pe=0.15; q=2; W=0.0004 m s-1; d=16 m 

Figure 13. Results from 1DV numerical tests in unsteady state with erosion represented 
by an instantaneous profile of Ci/Cinit. Instantaneous profile of C

~
/Cinit according to the 

phenomenological model without erosion or deposition. Ratio Ci/C
~

 and function 
))1(ˆexp()(ˆ 2 zzG   adjusted from this ratio. 

 

 
Figure 14. Values of -∞ as a function of p× (596 experimental points). 

The black line corresponds to ∞=-0.5(q and the red line to the adjusted law for 
values of q  greater than 0.10 (see equation 35). 
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These results are compared with those obtained with the phenomenological model 
developed in this paper. The results of two simulations are described below. These 
simulations are referred to as Case 1 and Case 2. 
The values of the variables of the problem relating to Case 1 are summarized in Table 1. 
As a consequence of the imposed values in	this	simulation, the dimensionless number 
(Uc-moy×T/d) is relatively high, so that in the absence of deposition and erosion 
phenomena, sedimentary regimes would be nearly steady (see equation 25). 
Results from 1DV model show, in line with those obtained from the phenomenological 
model (see Figure 15), that its non-dimensional parameters are nearly steady. It is 
observed that at every time  and  parameters are close of their respective ∞ and ∞ 
terminal values. 
During the intervals of time when the vertical profile of the concentration is not affected 
by sediment exchanges between the bed and flow (erosion and deposition), the ̂  signal 
obtained from results of the numerical 1DV modelling is well approached by the signal 
=~  of phenomenological models. 
In the presence of deposition and erosion phenomena, signals  and ̂  diverge, which 
is due to a change of the shape of the vertical concentration profile with respect to its 
shape without deposition or erosion. 
During the periods when the sediment dynamics is affected by erosion or deposition, a 
modification of the shape of the vertical concentration profile is controlled by 
parameter . The very good agreement observed between  and ̂  implies that the 
accuracy associated with phenomenological model results is excellent in this test-case. 
In order to characterize a bulk accuracy of the phenomenological model, the relative 
errors at the bottom e(z°=0) are calculated as follows: 
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Knowing that the vertical mean concentration is given by: 
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The value of CR is evaluated by: 
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It is observed that the signal of e(0) contains moderate peak values associated with 
sudden beginning and end of erosion and deposition phenomena. Moreover, 
calculations show that the maximum values of |e(z°=0)| is less than 0.006, which 
confirms the very good accuracy accompanying the phenomenological model results in 
this case. 
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Table 1. Values of the problem variables defining Case 1 studied. 
Variable Symbol and value 

Depth d = 2.00 m 

Settling velocity W = 0.0002 m s-1 

Mean value of the shear velocity Uc-moy = 0.04 m s-1 

Signal period Uc T = 22320 s 

Relative amplitude of the signal Uc Ampl=0.80 

Critical shear velocity for deposition Uc (critical for deposition) = 0.50×Uc-moy 

Parameter of the Krone’s deposition law p = 0.50 

Critical shear velocity for erosion Uc (critical for erosion) = 1.70×Uc-moy 

Non dimensional effective erosion rate )/( init
ef CWE  = 1.00 

 

 

 
Figure 15. Results from models corresponding to Case 1, defined by the variable values 

gathered in table 1. This figure shows the time variations of the vertical mean 
concentrations and non-dimensional parameters of the phenomenological model 

describing the vertical suspended matter profiles. 
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The variable values connected with Case 2 are summarized in table 2 and the 
corresponding results are shown in Figure 16. It is found that  and ∞ values are 
different as a rule, although both values are almost identical for low values of ∞=Pe. 
The values of  are close to those of ∞ during erosion phases that coincide with a low 
value of Pe, so that during periods of deposition, when Pe reaches its maximum values, 
the magnitudes of  and ∞ are generally different. 
In short, in this Case 2, the non-dimensional parameters of the phenomenological 
models approach their theoretical terminal values when Pe is small. That occurs for high 
values of Uc, which is the magnitude controlling the vertical sediment transfers 
associated with turbulence. 
Extreme observed values of e(0) are larger than in Case 1. Indeed, the absolute relative 
error reaches a maximum value of 0.10, which, for us, seems well acceptable. 
Figure 17 shows vertical profiles of the concentration divided by the initial 
concentration of the test. Four sequences of profiles are shown, corresponding to four 
observation windows. The instants to of these windows correspond to: 
- The beginning of deposition period. 
- The end of deposition period. 
- The beginning of erosion period. 
- The end of erosion period. 
In a general way, there is a very good agreement between the numerical results from the 
1DV theoretical model and those from the phenomenological model. In all studied 
cases, a good convergence of the last one must be pointed out, although, during the 
period following the beginning of the deposition, a slight delay for the convergence near 
the bottom is found. 
 
 
Table 2. Values of the problem variables defining Case 2 studied. 

Variable Symbol and value 

Depth d = 8.00 m 

Settling velocity W = 0.0012 m s-1 

Mean value of the shear velocity Uc-moy = 0.04 m s-1 

Signal period Uc T = 22320 s 

Relative amplitude of the signal Uc Ampl=0.80 

Critical shear velocity for deposition Uc (critical for deposition) = 0.50×Uc-moy 

Parameter of the Krone’s deposition law p = 1.00 

Critical shear velocity for erosion Uc (critical for erosion) = 1.70×Uc-moy 

Non dimensional effective erosion rate )/( init
ef CWE  = 2.50 
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Figure 16. Results from models corresponding to Case 2, defined by the variable values 

gathered in table 2. This figure shows the time variations of the vertical mean 
concentrations and non-dimensional parameters of the phenomenological model 

describing the vertical suspended matter profiles. 
 
5. Synthesis of the phenomenological model describing convection and diffusion of 
suspended matter 
In the open surface flows studied in this paper, the suspended sediments are transported 
horizontally by the current. In these conditions, the phenomenological models 
developed for the parameters alpha and beta can be applied only if the sediments are 
followed in their horizontal movements. In Euler coordinates, that implies a need to 
include horizontal convection terms in the model equations. 
 
 



Description non stationnaire de la distribution verticale des sédiments transportés en 
suspension par les écoulements à surface libre, en présence de dépôt et d’érosion : 9.83 
 

 

 
Figure 17. Concentrations divided by the initial concentration in the X-axis as a 

function of z° in the Y-axis. Dotted black line: numerical results from the 1DV model. 
Black line: results from the phenomenological model. Red line: exponential law with 

alpha as unique non-dimensional parameter. 
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The final equations used in the 2DH transport model of suspended sediments by a flow 
are presented thereafter. First, the equation governing variations of the vertical mean 
concentration C : 
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where xV  and yV  are the components of the vertical mean velocity of the flow in the Ox 
and Oy directions respectively. 
The vertical profile of the concentration is described by equation 27, given below: 

))1(exp()exp()( 2 zzCzC R    

From equation 38, the reference concentration of the profile CR is connected to C  by: 
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The bottom concentration C0, whose value is necessary to evaluate the effective 
deposition rate Def, is linked to CR by: 
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The parameter ~ , in accordance with equation 24, and taking into account the 
horizontal convection, is governed by: 
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where ∞=Pe is the terminal steady state value of the parameter  and c≈0.667 is a 
coefficient of the model. By including horizontal convection in equation 31, governing 
parameter , it becomes: 
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where ∞ is the terminal steady state value of parameter , which depends on the 
sediment exchanges between the bed and the water column. These exchanges are 
parameterized by Def and Eef.  
In the case of effective deposition (Def>0; Eef=0): 

   3.0667.0:,50.0 candp  
In the case of effective erosion (Def=0; Eef>0): 
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In the case of nil effective exchanges between the bed and the flow (Def=0; Eef=0): 
667.0:,0   cand  

 
5.1 Two equations vertical convective-diffusive model 
This model should be used when  and  are generally different of ∞ and of ∞, 
respectively. 
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If the hydrodynamic actions parameterized by |Uc| have a periodicity T, this case 
corresponds to a dimensionless number (Uc-moy×T/d)<<500. The non-dimensional 
parameters of the model must be simulated by equations 40A and 40B. The results are 
then reliable at all times. 
 
5.2 One equation vertical convective-diffusive model 
In some problems, at any moment ≈∞, while in general ≠∞. In these problems 
=∞ must be retained, but since (t) is delayed compared to ∞(t), it must be simulated 
by equation 40A. The fact of retaining =∞ can induce some significant errors over 
short periods of time following the end of the depositional and erosional periods (see 
Figures 15 and 16). This case corresponds to (Uc-moy×T/d)≈500 
 
5.3 Zero equation vertical convective-diffusive model 
In this case, the stationarity of the parameters  and  is observed. Then, =∞, and 
=∞ can be retained. This case corresponds to (Uc-moy×T/d)>~500 with very short or no 
periods, with low values of Uc. The results for C0/C  are then very close to those 
calculated by the formulation of TEETER (1986), (equation 14), and practically 
identical for values of	p close to 1. 
 
6. Conclusions 
The study of the vertical profile shapes of the suspended sediment concentrations allow 
to draw two general conclusions, non-dependent on the phenomenological model 
developed in this paper: 
- In steady sedimentary state, analytical or numerical solutions of the equations 

governing the problem allow to describe C/C0 profiles by a function F(z°;∞) 
defining the general equation of these profiles, where ∞ is a non-dimensional 
parameter which depends on the W/Uc ratio. 
For unsteady state, when conditions without erosion or deposition are imposed in the 
modelling, at any time the C/C0 profiles converge towards F(z°;∞). Although the 
real convergence is faster at the bottom and surface than over the rest of the water 
column, in most cases C/C0 profiles are fairly well modelled by the same function 
F(z°;), with the value of the parameter  always tending towards the instantaneous 
value of ∞. According to modelling, the only significant deviation from this general 
equation of the C/C0 profile is observed when the phase shift between the signals (t) 
and ∞(t) is very important. That occurs for values of Uc which tend towards zero 
((W/Uc)→∞), for which, compared to the general equation of the profile C/C0, an 
over-accumulation of sediment in the layers of the water column located near the 
bottom is caused by the 1DV transport equation governing the vertical dynamics of 
the suspended matters. This over-accumulation disappears when the values of Uc rise 
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again. This deviation from the general equation of the profile is largely an artifact of 
the modelling, because, in these conditions, deposition must occur. 

- With deposition or erosion, if the independent variables of the problem (Uc, W et d) 
are constant, and if the sediment exchanges with the bed are proportional to the 
settling velocity multiplied by the bottom concentration (constant parameters p 
and q), the 1DV modelling shows that the profile of the C/F(z°;) ratio always tends 
towards a terminal shape, and remains similar thereafter. 
If these conditions persist long enough, a terminal form defined by a function 
G(z°;∞) is reached. Then, a stationarity of the parameter ∞ is observed, so that the 
C-profiles can be modelled by a function CR×F(z°;)×G(z°;∞), where F(z°;) is the 
function describing the C/C0 profile for unsteady state without deposition or erosion. 
If stationarity is not reached for , the vertical profile of C is not exactly described by 
CR×F(z°;)×G(z°;), but this expression is, however, a satisfactory approach. 

The main numerical results of this study were obtained with a turbulent diffusivity 
coefficient Kz, invariant with z. This same approach can be applied when Kz varies with 
z, which implies a possible modification of functions F(z°;) and G(z°;) (see 
Appendix 1). 
When Kz is constant over all the water column, the functions used are 
F(z°;)=exp(- z°) and G(z°;)=exp(-(1-z°)2). The terminal value of the parameter  
is ∞=Pe, and that of  is either a function ∞(p,)=0.5 p, in case of deposition or a 
function ∞(q,) in case of erosion (equation 35). According to the phenomenological 
model developed in this article, the variations of  and , can be simulated by equations 
40A and 40B, respectively. In this model,  and  converge uniformly over the entire 
water column towards ∞ and ∞, respectively, which is an approximation of the 
problem because the real convergence appears to be faster at the bottom and surface 
than over the rest of the water column. 
The best validation of the phenomenological model is its proven ability to reproduce the 
vertical dynamics of suspended sediments and to provide results which are very similar 
to those obtained from a numerical solution of a 1DV theoretical equation with a 
discretization of the water column that uses at least 50 layers. 
In applications to real cases, errors linked to the phenomenological model results are 
acceptable if erosion and deposition are set correctly. However, with depositional 
conditions, if p=0 is imposed, the relative errors in the modelling results reach a value 
of 0.40, when (Uc-moy×T/d )≈7 and Pe=12 (see Figure 5b). This error is largely a bias of 
modelling because this case is extreme, with very marked depositional conditions, so 
that p=0 is unrealistic. 
Insofar as the phenomenological model approaches the theoretical solution of the 
problem, the following two conclusions on sedimentary behaviour reflect a reality, at 
least on average, over the water column: 
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- In agreement with this model, the value of  always tends towards Pe. Without 
erosion or deposition, when ≈Pe the vertical profile of the concentration is under 
conditions close to equilibrium between settling and convection, over the entire 
water column. If the independent variables (Uc, W and d) remain constant, the time 
required to achieve this equilibrium can be characterized by a time constant 
=d/(c×Uc), so that after a time t=4.6×, we get: (∞-)=(∞-init)/100, where init 
is the initial value of this parameter (at t=0). 
This expression of the time constant is justified by the fact that to achieve the 
equilibrium conditions, the suspended sediments must be redistributed over the entire 
height d of the water column, and the rate of the vertical transfers of sediment by 
mixing is controlled by Uc. 

- The non-dimensional parameter of the model is associated with the effects of the 
sediment exchanges between the bed and the flow, on the vertical concentration 
profile. After a depositional or erosional period, when the sediment exchanges at the 
bottom stop, the value of  tends to zero as suspended sediments redistribute over the 
water column, approaching thus sedimentary states, either steady or unsteady, 
without deposition or erosion. When the independent variables of the problem are 
constant and p or q remains constant, in case of deposition or erosion, respectively, 
the time required for  to reach its final value ∞  is characterized by a time constant 
=d/(c×Uc). 

It should be noted that this research was developed specifically for applications on fine 
sediments, but the presented methods and results can be applied to all types of material 
transported in suspension by any stream, on condition that the variables of the problem 
are well parameterized. 
For the final conclusion, we can say that the phenomenological model developed in the 
context of this paper to describe the vertical profile of the concentrations in 
hydrosedimentary 2DH models can significantly improve the accuracy and quality of 
information that can be obtained from modelling. 
 
7 Appendices 
 
7.1 Appendices 1: Analytical solutions for the vertical profile of suspended matter 
concentration in a flow 
If the suspended sediment profile is in equilibrium (without erosion or deposition) 
integration of equation 8 leads to the generalized Rouse-Vanoni law for the vertical 
steady state distribution of the concentration (ORTON & KINEKE, 2001; SANCHEZ et 
al., 2005), that is: 
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The solution of this equation depends on the formulations chosen to describe W and Kz. 
In this paper, W and Kz are studied as constant magnitudes, so, in steady state, 
concentration is given by equation 10. 
Another widely known solution for concentration in steady state, which is due to 
ROUSE (1937), assumes W invariant with z, and Kz described by: 
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The corresponding solution, which is valid for z≥a, is obtained since: 
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where Ca is the reference concentration near the bed at a level z=a from the bottom. The 
evaluation of Ca/C  ratio from this equation is very sensitive to the value used for a, 
which, according to some authors, is equal to 0.05×d, but for other authors, is in the 
same order of magnitude as the bed roughness. 
In a more general way, if Kz is a function of z, and W depends on the local concentration 
C, in accordance with a power law which can be written as follows: 
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where W0 is the value of settling velocity associated with the concentration at the 
bottom C0, and r is a constant, then, the vertical profile of the concentration is described 
by: 
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with 0=r/W0, and z which is given by: 
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These last three equations remain valid if, from a viewpoint similar to that adopted to 
statistically classify the diameter of sand grains in granulometric studies, the settling 
velocity is described according to a gamma distribution of parameters r and z 
(SANCHEZ, 2006). 
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7.2 Appendices 2: Relation between the bottom concentration and the vertical mean 
concentration as a function of the non-dimensional parameters of the phenomenological 
model describing the suspended matter vertical profile 
From equations 27 and 38 can be written: 
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This expression admits an analytical solution for =0 and can be evaluated by using 
integral tables of the normal Gaussian distribution when =0.5. However, in a general 
case, this equation must be numerically integrated as follows: 
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Figure 18 shows C0/C  as a function of / for some values of . 
 

 
Figure 18. Variation of C0/C  as a function of / for some values of  according to the 

phenomenological model describing the suspended matter vertical profile, which has 
been carried out in this paper. 
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Additional numerical tests of which some results has been published by SANCHEZ (2014), show that in 

case of erosion the parameter ∞ can be linked to q by one unique expression satisfying bottom border 

conditions associated with solid exchanges between the bed and the flow: 

∞ = -0,50 q , for every value of q (Eq. 35 modified) 

In case of deposition (Def>0) in this paper the coefficient c was linked to  by equation 32, on the basis 

of results obtained from numerical simulations carried out with =∞. When ≠∞ results are improved if 

the c coefficient is related to ∞ through equation 32 modified as follows (see SANCHEZ, 2014): 
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