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Abstract:

This study introduces an input reduction (IR) methodology that we developed
specifically to enhance computational efficiency in nearshore wave modeling for the
complex area of the Nord Médoc coast, adjacent to one of the largest estuary in Europe
(Gironde). This methodology combines simulated annealing optimization with wave
modeling. We apply it to an extensive 15-year offshore wave time series obtained from
MARC’s Wavevatchlll-based simulation and prediction system (LOPS). The IR
effectiveness is assessed by comparing the original and simplified offshore wave time
series, simulated with the spectral wave model SWAN, at three nearshore locations in
our study zone. Results indicate a strong agreement nearshore between the original and
simplified offshore wave time series, with mean absolute errors ranging from 8 to 20 cm
for the significant wave height, 0.7 to 1 s for peak wave period and 1.2 to 3.8° for wave
direction. Using an optimal number of 30 clusters, the simulated annealing optimization
effectively clusters wave data. Further validation of this IR-method involves analyzing
its impact on long-term sediment transport using a reduced complexity shoreline model
(LX-shore). This study lays the groundwork for the set-up of the reduced-complexity
shoreline model to be applied in this intricate hydro-morphodynamic zone.
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1. Introduction
This work presents a study case on the Nord-Médoc coast, located in the southwest
France adjacent to one of Europe’s largest estuaries, the Gironde. Despite local efforts
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to mitigate erosion, this area is experiencing significant shoreline retreat, urgently
requiring the development of a shoreline evolution model to address this issue.
Shoreline evolution models can be used to hindcast and predict coastal changes, making
them of strong interest for informed decision-making in coastal management strategies.
For long-term shoreline evolution predictions, traditional physically based models (e.g.,
X-Beach, ROELVINK et al., 2009) are computationally demanding, particularly across
wave-dominated coasts and spatial scales spanning kilometers (DALY et al., 2014).
Additionally, these process-based models tend to accumulate error over time, making
them unsuitable for long-term simulations. In contrast, recent years have witnessed the
emergence of reduced complexity shoreline models overcoming some of the limitations
faced by traditional process-based models to tackle long periods (i.e. years, decades)
and large domains. However, even though these models have proven to lead to more
reliable long-term shoreline evolution (MURRAY, 2007), they are challenged in
complex hydro-morphodynamic environments due to the oversimplification of wave
transformation, which leads to a flawed description of the breaking wave conditions
driving morphological changes. Recognizing this challenge, spectral wave modeling
becomes necessary to resolve wave propagation in the nearshore and obtain more
precise breaking wave parameters.

Our focus then turns to LX-shore, a reduced complexity shoreline model known for its
effectiveness in long-term shoreline prediction (ROBINET et al., 2018). LX-shore
offers the advantage of being coupled with the spectral wave model SWAN (BOOIJ et
al., 1999), providing accurate wave nearshore resolution. Nevertheless, spectral wave
modeling, particularly in complex hydro-morphological environments such as the Nord
M¢édoc region can lead to excessive computational time. This contradicts the efficiency
sought in reduced-complexity models, undermining one of their key advantages. To
overcome this lock, this work presents an input reduction (IR) methodology aiming at
reducing computational time while maintaining fine precision in nearshore wave
conditions when modeling long-term wave propagation in the nearshore with SWAN.
The ultimate goal of this IR-method is to provide reliable wave conditions to LX-shore
for the prediction of long-term shoreline evolution in the Nord Médoc region. However,
in this work, we focus on presenting the results of the IR-method, to demonstrate its
effectiveness in accurately extracting breaking wave conditions.

2. Study site and input reduction methodology for nearshore modeling

2.1 Study site and overall methodology

The study area spans 15 km of sandy coastline along North Médoc, from Cape Grave to
Cape Négade (Figure 1), located south of the Gironde estuary. This coastal region
experiences rapid morphological changes, due to the interaction of external forces such
as waves and tides, and internal dynamics within the estuaries. Figure 1 provides an
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overview of the study site bathymetry (based on SHOM, 2015, MNT Bathymétrique de
facade Atlantique Projet Homonim, http://dx.doi.org/10.17183/MNT_ATL100m_HOMONIM_WGS84),
illustrating its complexity. Waves approach mainly from westerly to northwesterly
directions, with a monthly average significant wave height ranging from 1.1 to 2.4 m,
indicating predominantly energetic wave regimes (CASTELLE et al., 2017). Tides
follow a semi-diurnal pattern, with a tidal range of 1.5 to 5.5 m, exerting strong
influence on coastal currents.
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Figure 1. Bathymetry of the study zone illustrating the coarse and fine grid boundaries
for the SWAN model. The offshore node, ADCP stations, and inshore nodes.

On the study area, we implemented SWAN models on two nested grids (Figure 1). We
developed the IR-method to reduce the offshore time series limiting the number of wave
conditions and thus reduce the number of simulations to do with SWAN to estimate
nearshore wave conditions. For this purpose, this IR framework is applied to wave time
series extracted from the MARC platform (https://marc.ifremer.fr) at our offshore
forcing node of the SWAN model located at 35 m water depth (green box, Figure 1).
The MARC wave time series comes from WAVEWATCH III (WW3; ARDHUIN et
al., 2010) simulations. Henceforth, we will refer to this offshore wave time series as our
original offshore wave forcing. This time series covers the past 15 years (2008-2023)
with an hourly time step. We simplify the wave forcing time series using an
unsupervised classification method optimized by simulated annealing (KIRKPATRICK
et al., 1983). This process categorizes the offshore wave time series into a simplified
dataset, maintaining representativeness of the wave forcing, where each cluster is
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distinguished by unique wave condition. These clusters are then propagated to
nearshore using the SWAN model to further extract breaking wave conditions. These
simulations enable the construction of a simplified yet comprehensive and
representative dataset of wave climates, connecting offshore wave forcing with
nearshore wave characteristics. Simplifying the wave forcing time series allows us to
reduce the number of runs required with SWAN. However, a key question arises
regarding the optimal number of clusters into which the time series can be reduced
while still achieving the objective of serving as a representative input for long-term
shoreline modeling. To address this question, the input reduction methodology involves:
(1) the classification process to reduce offshore wave time series, and (ii) the
propagation of wave clusters using SWAN spectral model extracting wave parameter
near the breaking zone to evaluate the effectiveness of reducing the offshore time series,
quantify associated errors, and determine the optimal number of clusters.

2.2 Classification process to reduce offshore wave time series

Various IR-methods are available for reducing offshore wave time series, including
binning e.g., energy flux (BENEDET et al., 2016), clustering e.g., simulated annealing,
K-means (CAMUS et al., 2011) and the equivalent wave approach (CHONWATTANA
et al., 2005). Despite their diversity, in this work, we adopt the approach of ABADIE et
al., (2006), that uses simulated annealing as the IR technique to establish boundary

conditions for the SWAN model to compute breaking wave parameters. The IR-method
is applied to reduce the 15-year original offshore wave time series (obtained at the
offshore northern node of our study) into a limited number of wave conditions. The
method is applied to the bulk wave features, i.e. significant wave height (Hs), peak
wave period (Tp) and mean wave direction (Dir). Using these parameters, we define a
total distance function (Equation 1) that sums the distances of each data point to their
corresponding center class. The parameters are normalized with standard deviation
(Hsn, Tpn, and Dirn) to ensure equal weighting in the total distance function, written as,

Nc

DistTot =>">" dist(x;,Cg;,) (D)
ic=1 ieC

dist:\/(HsN —Hs.)* +(Tpy —=Tp.)’ +(Dir, - Dir.)? (2)

where Nc is the number of class, C is any class in the data set, Cgic the center of gravity
of the class ic, xi any point within the class ic. This function serves to measure the
quality of classification; therefore, the research of the class center becomes an
optimization task aimed at minimizing the total distance function. Simulated annealing
is introduced for this purpose, being an unsupervised optimization method known for its
ability to avoid local minima and finding global optima result through iterative
evaluation and acceptance of the total distance function values. Simulated annealing has
demonstrated effectiveness in clustering optimization problems, outperforming other
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numerical methods (KIRKPATRICK et al., 1983). However, the algorithm involves
several parameters that require tuning to converge to an optimal solution. Through an
extensive parametric study, we varied these parameters to optimize the number of class
(Nc). Many simulations were conducted for Nc ranging from 8 to 100. To determine the
most representative Nc, we first employed the elbow technique. This technique
evaluates the total distance as a function of Nc, identifying an inflection point where the
addition of more clusters does not significantly reduce the total distance, thereby
preventing overfitting. While this technique typically provides an interval of optimal Nc
rather than a clear inflection point, it serves to narrow down our choices. After

narrowing down Nc, we delve deeper into the clustering results by employing a spectral
wave model (SWAN).

2.3 Evaluation of offshore wave time series reduction with SWAN

We implemented a SWAN spectral model, featuring nested grids: a coarse grid covering
30 x 40.8 km with a regular spatial resolution of 100 m (shown in Figurel) and finer
grid nearshore spanning 20 x 15 km with a regular spatial resolution of 20 m (shown in
Figure 1). These grids have a 14° rotation to align the main offshore wave boundary of
the coarse grid with the 35 m depth contour, allowing to force the model with
homogeneous wave conditions on the offshore boundary. The bathymetry is the latest
version uploaded from SHOM (Figure 1). The offshore boundary forcing is applied
based on JONSWAP spectral formulation, employing constant forcing along the West,
North and South boundaries. Tidal variation is incorporated using data from Port-Bloc
tide gauge at Pointe de Grave (https://data.shom.fr), while currents and wind effects are
initially excluded. A validation of the SWAN wave model is conducted prior to its
implementation, aiming to assess the efficacy of simplifying the original offshore time
series. This validation consists on comparing its results with in-situ measurements
collected using three ADCPs (shown in Figure 1) during an intensive 5-week field
experiment under low to medium wave energy conditions. Details regarding this field
campaign are provided in VANDENHOVE et al. (JINGCGC 2024). Subsequently, the
model is applied to compare the original and classified offshore wave time series,
evaluating inshore wave parameters in a Sm depth (shown in Figure 1). This depth is
chosen to approximate conditions near the breaking line, allowing to evaluate the
efficacy of the simulated annealing clustering and quantify the errors.

3. Results
3.1 Simulated annealing: elbow method for optimal cluster number selection

Figure 2 shows the application of the elbow method, where the total distance resulting
from simulated annealing optimization across varying Nc values is plotted. Although no

clear inflection point is evident, an interval (Nc=15 to Nc=40) is observed, suggesting
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that the optimal value may lie within this range. Thus, we choose Nc=15, 30, and 40 to
propagate both the original and these simplified wave forcing to nearshore.
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Figure 2. Elbow technique for cluster analysis and a 3D representation of the
classification corresponding to Nc=30 (top right plot).

3.2 Model validation with ADCP data

We validated the SWAN model by comparing its results to field data collected during
September 2022. The model is forced using original time series extracted at the northern
offshore node (Figure 1) during this period. Figure 3 compares the evolution of Hs and
Dir between the SWAN model results and the ADCP data.
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Figure 3. Comparison of observed and simulated wave at the 3 ADCP.

Despite spatial variations in estimation accuracy, the model generally performs well,
with mean absolute errors ranging from 0.18 to 0.22 m for Hs, 2.5 to 5.8 s for Tp, and
12.2 to 24.3° Dir, with the largest errors observed in direction estimation. Therefore, it
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can be effectively used to evaluate the impact of the offshore simplified wave time
series on nearshore parameters to obtain an optimal Nc.

3.3 Impact of simplified offshore wave forcing on nearshore wave parameters
We use the SWAN model to simulate the wave transformation for the original offshore

wave time series in September 2022 and simplified wave time series reduced to Nc=15,
30 and 40. The results of these 4 simulations are compared at the 3 inshore nodes (depth
5m shown in Figure 1). The top plots in Figure 5 illustrate the evolution of Hs, Tp, and
Dir at the offshore boundary for the original time series and its 30-classes reduced time
series. The bottom plots in Figure 5 correspond to the SWAN results for the north
inshore node (red triangle in Figure 1) comparing the results when forcing with the
original offshore time series and simplified to 30 classes. Table 1 summarizes the mean
absolute errors (MAE) between the original and the simplified wave forcing at the three
inshore node locations (nord, center and south).
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Figure 4. Comparison of original and simplified (Nc=30) offshore wave conditions at
offshore boundary (top plots) and SWAN results at Nord inshore node (bottom plots).

Table 1. MAE at inshore locations using either original or simplified wave condition.

Inshore Hs [m] Tp [s] Dir [°]

Node Ncl5 | Nc30 Nc40 Ncl5 Nc30 Nc40 Ncl5 Nc30 Nc40

Nord 0.126 | 0.090 0.086 1.056 0.758 0.790 1.462 1.186 1.217

Center 0.206 | 0.167 0.152 1.053 0.755 0.786 2.975 2.602 2.494

South 0.170 | 0.125 0.123 1.045 0.767 0.779 3.866 3.241 3.127
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The mean absolute errors ranges from 8 to 20 cm for Hs, 0.7 to 1 s for Tp, and 1.2 to
3.8° for Dir. This suggests that this 15-year wave forcing dataset can effectively be
condensed into a smaller number of classes such as 15 to 30 classes. Table 1 reveals a
more significant reduction in errors from 15 to 30 classes compared to 30 to 40 classes,
implying that Nc=30 may be an optimal choice balancing error reduction and
computational time gain in SWAN simulations. These results also emphasize the
effectiveness of the elbow method and of simulated annealing optimization for data
clustering.

4. Discussion and conclusion

The comparison of the nearshore waves at the 3 inshore node locations extracted from
SWAN simulations forced by either original or simplified offshore wave time series
shows strong agreement. Indeed, it is important to note that while errors were analyzed
separately, their impact on sediment transport is not linear. Moreover, WALTON &
DEAN (1973) emphasized that only sea states inducing long-term shoreline changes
should be considered for long-term morphodynamic studies. Therefore, further
refinement may involve re-categorizing the number of classes to achieve a more
significant reduction. This hydrodynamic analysis serves as an initial step, and
validation of the IR-method must be conducted by analyzing the impact of the offshore
wave forcing simplification on longshore sediment transport. This validation is going to
be done by using the reduced complexity shoreline model LX-Shore.

Nevertheless, for the successful implementation of this reduced complexity model in
this intricate study zone, it is necessary to establish the database linking offshore wave
forcing for different water levels with wave parameters at the breaking zone. This
database is going to be incorporate to LX-Shore with the purpose of reducing
calculation time when modelling long-term shoreline evolution. Additionally, as
accurate wave parameters at breaking zone are crucial, we plan further refinement of the
SWAN spectral wave model as discrepancies were observed between model outputs and
field data (ADCPs), indicating areas of improvement. These errors may come from
simplifications in our SWAN modeling, such as neglecting currents or using constant
friction values.
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