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Abstract: 
Despite a global context of shoreline retreat, coastal areas and in particular sandy coasts 
are increasingly attractive. To handle the problem of coastline retreat different 
management strategies are deployed and among them soft methods as windbreakers or 
hard ones as seawalls. But all those methods are known to interfere in the natural 
evolution of the beach/dune systems at different timescales. To underline potential 
influences of management strategies on erosion and recovery periods, high frequency 
DGPS surveys coupled with video images are recorded at a workshop-site exhibiting 
various management strategies, Biscarrosse beach (SW of France) from November 2015 
until September 2016. Results for the winter 2016 highlight a global erosion of the 
beach associated to a dune foot retreat and an alongshore variability in the beach 
response to events. The same patterns can be observed during the seasonal recovery 
period (April to August), in particular a lag in the berm reconstruction in front of the 
seawall. The LVI (Longshore Variation Index) reflects possible sediment processes 
taking place between the different sections of the beach: while recovery seems to be 
dominated by cross-shore exchanges in the unmanaged section, longshore sediment 
processes seem to be the origin of the recovery in the managed section.  This variability 
could be linked to a permanent rip current visible (98% of observation) in front of the 
seawall that could cause an offshore sediment export explaining both the lag in term of 
recovery timescale and the different sediment processes involved during the recovery 
period. During the erosion season, sediment exchanges between the beach and the dune 
are limited due to the presence of seawalls and beach erosion and dune retreat in the two 
ends on the wall accelerated.  
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1. Introduction 
Over the last decades, shore areas became more attractive, not only for tourism but also 
for the better way of life represented by an oceanic climate and water recreations. This 
increase in human activities implies a consequent economic benefit for coastal cities and 
the development of infrastructures directly build on the shore. In the contexts of global 
warming and shoreline retreat those infrastructures are threatened, as city’s economic 
supply. According to PILKEY and HUME (2001), 80% of the world shoreline was in 
retreat ten year ago, associated with a lowering of beaches levels. Moreover, sandy 
coasts evolve at extreme event scales and even if beach recovery can take place over 
short period (few days), it is generally much longer (several weeks to months) while 
dune reconstruction based on wind sediment transport could even reach the decade. In 
order to restrict storm impacts on human activities and preserve natural areas as dunes, 
management strategies are deployed on seashores. After a study of the major issues of 
the sites, two types of strategies are preferentially developed depending on the desired 
effect (MICALLEF & WILLIAMS, 2002): soft and/or hard methods, sometimes as a 
step before thinking to a possible strategic retreat. The soft ones e.g. wind or wave 
breakers, pathway delimitations, revegetation of the dune or re-sanding are favored with 
the purpose to help the dune/beach system to resist to energetic conditions. Hard 
methods (e.g. seawalls and dykes) are used to anchor and fix the shoreline for a long 
term period. But, either hard or soft, each method has an impact on the system and 
modifies it, at its one timescale (ELLS & MURRAY, 2012). The general public 
generally considers that hard structures reduce the impact of winter storms seasons by 
inhibiting dune retreat, decreasing the risk of flood, etc., and thus is benefiting to the 
beach system. However PILKEY and WRIGHT (1988) underlined that seawalls can 
degrade beaches in three ways: (1) passive erosion due to tendencies which existed 
before the wall was in place; (2) active erosion du to interaction of the wall with local 
coastal processes and (3) lost of accommodating place. Moreover, it can be supposed 
that fixing the dune foot or managing just a little part of a strait sandy shore could 
influence the "unprotected" part of the shore, especially in open and linear coast 
systems. 
The Aquitanian coast is about 250 km of strait sandy beaches and dunes punctuated by 
different management strategies all along the shore. The National Network for shoreline 
observations Dynalit regroups 30 study sites in France with the purpose to understand 
storm processes in a context of global warming, and provide knowledge in term of 
coastal managing. During the exceptional winter 2013/2014, cluster of storms caused 
considerable damages on the Atlantic beaches and the associated dunes, impacting not 
only ecosystems but also the economy of the Aquitanian region (CASTELLE et al., 
2015). In this study the workshop site of Biscarrosse beach (SW of France) was chosen 
to understand the importance of beach management not only on the system’s response 
to storms but also on beach recovery exploiting high frequency DGPS surveys and 
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video dataset. According to ALMAR et al. (2009) and SENECHAL et al. (2015) the 
erosive trend decrease after February and Aquitanian beaches mostly recover the first 
month of summer (June and July). Thus, we only considered the period from January to 
September 2016 covering the maximum of erosion and the recovery period. 
 
2. Methods 
 
2.1 Field area 
Biscarrosse beach, located on the Aquitanian coast in the South-West of France (Fig. 1), 
was chosen as a workshop-site by the National Network for shoreline observations 
Dynalit (SNO Dynalit). This double barred beach has previously been described as 
morphologically typical of the Aquitanian beaches (ALMAR et al., 2009). Biscarrosse 
is a meso to macrotidal open sandy beach oriented about 280.5° from the North and 
fully opened to the North Atlantic swell. A strong seasonality in the wave climate is 
observed with significant wave heights that can exceed 10m during winter storms (from 
November to March). On average, the mean annual Hs is about 1.4m associated to Tp 
equals to 6.5s (BUTEL et al., 2002), and the mean spring tide in this area is 3.7m 
against 1.8m during neap tide.  
Changes in Biscarrosse beach morphology are both driven by a strong longshore drift 
orientated from the North to the South and poorly understood cross-shore exchanges. As 
presented by ANGNUURENG et al. (2017) Biscarrosse morphological response is 
relatively rapid at the seasonal timescale but also at the event scale. According to the 
WRIGHT and SHORT (1984) classification, this beach composed by medium sand, 
with a 350 µm median grain size (BA & SENECHAL, 2013), is defined as an 
intermediate beach mostly dominated by TBR and LTT states (PERON & SENECHAL, 
2011). In 2009, ALMAR et al confirmed that the inner sandbar generally present a TBR 
type associated to wavelengths around 400m, but that all intermediate states could be 
reached. The outer bar currently presents a crescentic shape with a typical wavelength 
about 700m, but its geometry can be influenced by the wave incidence and exhibits 
asymmetrical trends (LAFON et al., 2005; CASTELLE et al., 2007). 
Even if Biscarrosse beach is considered as a more “natural” environment compared to 
the other beaches, different management strategies were deployed on the beach/dune 
system. Indeed, Biscarrosse is a touristic hot point, and to be more accessible and 
attractive the back dune were covered by grass. Moreover, the southern part of the 
shoreline was fixed by a seawall while the northern part of the dune is only protected by 
windbreakers (Fig. 1). 
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considered began the 2nd of January 2106 with a maximum Hs of 6.1 m and a duration 
over 20 hrs. During the second one that hit Biscarrosse, from the 4th to the 7th January, 
waves reached 6.5m associated to a mean Hs of 5 m. The third one occurred from the 
11th to the 12th January and the maximum Hs was 7.3 m. But, it defers from the two 
previous ones by its storm apex correlated to a spring tide period. In view of the tiny 
interval between two consecutive storms (< 5 days), those three events could be 
considering as a same cluster. Thus the winter 2016 is composed by three clusters 
respectively made up by 3 and 2 storms, and two single events (Fig. 2, blue and red 
boxes). 
 
3.2 Morphological evolutions 
 
3.2.1 General overview: erosion/recovery 
On the Aquitanian coast, beaches are mostly wave dominated and the climate is clearly 
marked by a calm summer season and an energetic winter one (Fig. 2). First results of 
DGPS surveys at Biscarrosse beach show a classic cycle of erosional trends during 
winter versus recovery period during summer (Fig. 3). Indeed during the winter 2016 
characterized by surveys from the 5th of January to the 4th of April a lowering of the 
upper beach zone about 1 m is observable, while the intertidal zone general balance 
looks stable. Moreover, in the figure 3 the supratidal beach is eroded (-2 m) 
corresponding to a major dune foot retreat. During the recovery season, we observe an 
accretion of the supratidal and the upper beach between, on average, 1 and 2 m typical 
of the signature of the berm reconstruction. Besides 3D structures representative of 
beach cusps are visible on the berm, as well as an erosion of the intertidal beach. This 
suggests a sediment transport from the intertidal to the supratidal zone in order to feed 
the berm. The last panel of the figure 3 illustrates the morphological evolution of the 
beach from January until September 2016 covering the erosive and the entire recovery 
periods. During this period the upper beach gained big volumes of sediment but the 
supratidal beach (between -40 and -60 m in cross-shore direction) lost sand because of 
dune retreat.  
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3.2.3 Alongshore variability 
In 2017, Burvingt et al. proposed a Longshore Variation Index (LVI) to qualify the 
alongshore variability in beaches response to events (Eq. 2).  

QstdQmean
QstdLVI


  (2) 

Where Qstd is the standard deviation calculated to quantify the amount of variation of 
all the net volumetric change values (dQcross determined for each cross-shore transect), 
and |Qmean| is the absolute value of the mean of dQcross values. A LVI = 1 means that 
the longshore sediment transport is dominant while a LVI = 0 implies a cross-shore 
transport dominance. 
The longshore variability during the winter period (Fig. 3) does not look significant 
with a low LVI (0.4) implying a dominance of the cross-shore sediment exchanges. 
However, the high LVI calculated for the recovery period and the entire seasons (0.7 
and 0.91 respectively) suggest an alongshore sediment transport dominance. 
In winter 2016, for the first hydrodynamic event (E1, Fig. 4, as an example) an 
alongshore variability in the beach response to events is noticeable. The southern end of 
the dune (negative values along the longshore transect) is fixed by seawalls (black 
boxes, Fig. 4) and the erosion resulting from the E1 is more significant in this part of the 
beach. In order to quantify those observations, four transects are extracted from the 
DGPS surveys (A, B, C, D, Fig. 6). In the northern end of the beach (A, Fig. 6) a 
lowering about 1 m of the supratidal beach is visible after the passage of the fist event 
(13/01/16). As explained before, the second event provoked an erosion of the intertidal 
beach (-50cm maximum) and a recovery of the upper beach (+50cm maximum). After 
the third one (15/02/16), the dune foot retreated 10 m onshore and the beach reached its 
profile of maximum erosion for this winter. The 11th of March, an accretion of the dune 
foot is remarkable, but it is due to a previous dune resending (24/02/16) and is not 
natural. However, the intertidal beach recovered providing sediment to accrete the 
supratidal zone under the effect of the waves of the last storm (29/03/16).  
The beach dynamic to events in front of seawalls (C, Fig. 6) is rather different than in 
the north. The erosion provoked by the first storms equals more than 2m against the 
wall, and between 1m and 20cm all along the beach profile. After the 1st of February an 
accretion of the beach around 20cm in response to the second energetic event is visible. 
But, the main difference is the absence of erosion or accretion after the third event (E3). 
The beach profile is stable until the passage of the E4, the beach part against the wall 
eroded about 1 m while the intertidal zone accreted. As for the north, the supratidal 
beach profile rose about 50 cm after the last storm of winter.  
In the southern beach, just at the seawalls south end (D, Fig. 6), the first event caused an 
erosion of the beach around 1m and dune foot retreat close to 20m. The beach profile is 
stable in this zone even after the second event, contrarily to the other parts of the beach 
(A and C). After the E3, there is an accretion of the beach profile (+1 m) and an 
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Table 1. LVI for the summer season 
Period LVI 
04/04/16 to 19/04/16 0.67 
19/04/16 to 03/05/16 0.81 
03/05/16 to 10/06/16 0.99 
10/06/16 to 01/08/16 0.94 
01/08/16 to 26/08/16 0.70 
26/08/16 to 14/09/16 0.80 

 
4.2 Alongshore variability 
Morphological changes at Biscarrosse beach in 2016 were characterized by a longshore 
variability whatever the season. The overall overview for January to September (Fig. 3) 
is represented by a LVI of 0.91 indicating a longshore sediment transport dominance 
that could explain the beach response and the general sediment gain in the southern part 
of the beach. Previously the interaction between sandbars and the beach were described 
as a parameter to take into account when looking at the beach response to storms (e.g. 
CASTELLE et al., 2007; VAN DE LAGEWEG et al., 2013). On the Aquitanian coast 
the inner bar mostly presents a Transverse Bar and Rip morphology (LAFON et al., 
2002) associated with downdrift oriented Rip channels. Extraction of Rip channels from 
video images gave us an idea of the position of rips and the percentage of observation of 
the different channels (Fig. 8). According to our observations, one channel seems to be 
permanent (98% of observation whatever the season) and is located in front of seawalls 
in the south beach. The presence of a permanent rip channel could cause an export of 
sediment offshore toward the subtidal sandbar. In this case, the sediment is not available 
for the recovery explaining why the cross-shore transport is negligible during the 
southern berm reconstruction. Moreover, it also could explain the accentuation of the 
erosion of the beach in the south during the three clusters (e.g. CASTELLE et al, 2015). 
The stability in the position of this rip channel could be linked to the presence of the 
seawalls (TAIT & GRIGGS, 1991). The negative interaction between structures and 
beach/dune system has been previously classified into three categories: a beach width 
reduction, passive erosion and/ or active erosion (e.g. PILKEY & WRIGHT, 1988). At 
Biscarrosse during winter, an active erosion of the system is visible partially resulting 
from the seawalls position. The presence of hard construction limits sediment 
exchanges between the dune and the beach inhibiting the beach recovery following 
successive storms. There is also an “end-of-wall effect” defined by an important erosion 
of the two ends of the seawall (Fig. 9), impacting the dune slope and foot retreat as 
shown in the paragraph 3.2.2 (PLANT & GRIGGS, 1992; BASCO, 2006). Moreover, 
the fact that the rocks composing the wall were directly on the supratidal beach implies 
that the balancing zone is reduce. Indeed lots of exchanges are visible between the 
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tide. In this way recovery can take place even during winter and storm conditions. 
Seasonal recovery began in April in the northern part of the beach by a progressive 
accumulation of sediment in the upper beach supplying the berm reconstruction. But, 
the combination of seawalls and a permanent rip current in front of those structures, 
located in the south of Biscarrosse beach, generates a strong alongshore variability in 
the beach response to seasonal trends, erosion as recovery. Indeed, during winter the 
acceleration of the erosion of the beach and the dune retreat on each end of the walls are 
visible because of seawalls, and an offshore sediment transport supposed linked to 
permanent rip currents. During recovery periods, cross-shore sediment transports 
toward the beach are limited and berm rebuilding is mainly managed by longshore 
sediment transports, explaining the lag in the beach response compared to the north.  
In this study, it appears that both naturals (hydrodynamic conditions, sandbar positions, 
etc…) and anthropogenic factors are driving the morphological evolution of Biscarrosse 
beach. But, we cannot deny the impact of seawalls on the alongshore variability of the 
beach response at different timescales.   
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